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Skewed Stable Variables and Processes

by

Clyde D. Hardin, Jr.*

University of Wisconsin-Milwaukee
and

Center for Stochastic Processes
University of North Carolina, Chapel Hill

Abstract: We consider here general (i.e. possibly skewed or asymmetric)

stable distribution and processes. A decomposition result and a moment

equality are given for these distributions. More importantly, we determine

the form of all stable independent increments processes, construct a Wiener-

type stochastic integral with respect to these processes, and prove a rep-

resentation theorem for general stable processes analogous to (and in some

sense including) the spectral representation theorem for symmetric stable

processes. -- -
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Section 0. Introduction

One of the major themes of research in the area of stable processes

has been the analysis of their similarities and differences with Gaussian
processes, both of which there are many. A characteristic which stable

distributions and processes may possess, yet which their Gaussian counter-

parts may never possess, is skewness (i.e. asymmetry in the distribution).

Even though this is the case, most research in stable processes has dealt

only with the symmetric case. While there is much left to be done in the

symmetric case, it behooves us to investigate the asymmetric case as well,

since it adds a new dimension to the theory and since the freedom to allow

skewness enhances the potential for application involving these processes. - -
This work is a modest step in that direction.

The outline of the paper is as follows. In section 1, we define the

relevant terms and give some necessary (and some unnecessary) preliminary

facts. In section 2, we characterize all stable independent increment pro-

cesses, and develop a Wiener-type stochastic integral with respect to those

with location parameter zero. We also introduce a canonical independent

increments process with "maximum skewness." We then, in section 3, represent

"most" strictly stable processes as stochastic integrals with respect to

this canonical process. This theorem in some sense includes and elucidates

the known spectral representation theorem for symmetric stable processes

([2], [14], [9], [10]; see [8) for a discussion of this theorem).
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Section 1. Definitions and Preliminary Notions

The stable distributions arise as the only possible limiting distribu-

tions of normalized sums of i.i.d. random variables. P. Levy discovered

these distributions and also computed their characteristic functions. A

random variable X is stable if whenever X and X2 are independent copies --

of X, and c1 and c2 are any positive constants, there exist real constants

c>O and d so that cX + d has the same distribution as c1 X1 + c2X2. Equivalent-

ly, there should exist real constants a, 8, p, and v with 0 < a < 2,

-l < a < 1, and v > 0 so that X has characteristic function Cx(t) = Eexp(itX)

of the form

(1.) ~ t'= vlti (1-ia tan - sgn~t)) - bit if cs~l(1.1) -logox(t) t l i T;!
2vltl(l+i8- sgn(t) logltl)- iut if ci=l

Here a is called the index of stability (in which case we call the distribu-

tion a-stable), a is a skewness parameter, 1 is a location parameter, and

v is a scale parameter. The skewness parameter a gives a measure of how

much of the Levy-Khintchine jump measure is placed on the positive and

negative half lines. For example, a = +1, -1, or 0 according as the measure

is concentrated on the right half-line, the left half-line, or is symmetric.

For a historically instructive and amusing account of these distributions

and their characteristic functions, see P. Hall [7].

X is called strictly stable if d above is identically zero; or equivalently,

if = 0 in the case a # 1, or if 8 = 0 in the case a = 1. If a > 1, strictly

a-stable distributions have mean zero. Note that in the case a 1. all

stable distributions are just translations of strictly stable distributions,

but in the case a=l, the strictly stable distributions can have no skewness -

they are just translations of symmetric Cauchy distributions. Because we

.. . .

... 2.,-



N 3

lose almost no generality if we consider only strictly stable distributions

and processes in the case a 1 1, we will often do this. However for a = 1,

we must consider non-strictly stable distributions and processes to maintain

generality.

If X is stable and satisfies (1.1) we will write X ~ S (v,,P). Using

(1.1), the reader may easily verify the following two facts.

Lemma 1.1 If X - S (v,a,p) then for real c, cX - S (tciv, sgn(c)a,m) where

m cu if a 1, and m = cu - cloglcl 2 vB if a = 1.

I

Lemma 1.2 If X and X are independent with X. S (v.,8j,.j), then for
13 2 01

real cl, c2, c Xl + c2 X2  S (v,a,i) where

(1.2) v = Icll~v + Ic2 la 2

C<a> +.c<.

(1.3) 1= (c v181 + c2 < >v2a2)/v, and
Cl1 + c2 2 if c l

(1 .4 ) P + - 2 i.f .1

c (v a c logjclj+V S clogicj)

Here, and in the sequel we use the convention that for complex z = reie

and real p, z<> denotes rPeie; so that for x real, x<p> denotes jxjPsgn(x).

We shall study stable processes in the remaining sections. But before

embarking on that course, we give two propositions and an example, irrelevant

to the rest of the paper, included only for whatever-intrinsic interest

they may have.

It is well-known that for 0 < p < 1 and 0 < a < 2 that if A is a posi-

tive p-stable random variable, (i.e. A-S (v,l,0)) and X is symmetric a-
p

stable and independent of A, that A11 'X is symmetric pa-stable (see Feller

[6), p. 596, ex. 9). Here is a slight generalization.

............................................................

. . . . .
F_. T. . . _- . - __- - .. .'- " " " . -" " " ' " - - - " . -" - -' ' '" " " " ' "- . - -- '" ". -- - -
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Proposition 1.3 Let A and X be independent with A-S (VlOan

X-S (vX$,O) where 0 < p < 1, 0 < a < 2, and a 1 0 oa. Then A1"2X-S ,(7V,T,0).
In the case a< 1, if 6 = -1, 0, or 1, then 8=8
Remark. The values for the parameters -v and are implicit in the proof, their
expliit mention being avoided for aesthetic reasons.

Proof. WLOG assume that vA=V( .

With some manipulation of (1.1) and application of some standard

complex variable arguments, one can deduce that for complex w with Re w > 0,

(1.5) E exp(-wA) =exp(-kwO)

where k =1/cos L7,and we interpret wp e 1 ow Ijeiagw with

jargwjj w /2. Letting w > 0 in (1.5) we can deduce that A > 0 a.s. We

compute the characteristic function of Al/X. For a 1,

EexpiitA X) EE(exp(itA X)JA)

-E exp{-ItAl/a'ja(l-ia tan O'n sgn(t))}

-E exp{-[jtjca(l-is tan a"- sgn(t))]A}

-exp{-k[Itja(l-i8 tan cL~ sgn(tf]l}2

-expi-kjtjPa(l+ 
2 tan 2  ,L)[cos pe - sinpe sgn(t)]}

-exp{-kcospe(l+a tan2 a 7 )taE1  tan Pa sgn(t)]}

where 6 Arctan (a tan L)and =tanp6/tan(pa7/2). It is not difficult

to see that 8j < 1 in all cases under consideration. Note also that if

a< 1 and a ±1, that e = ± and ±1 as well. However, t8in

general.



5

Proposition 1.4 Let X S (v,a,0) for a 1. Then for 0 'p < ct, I

exists and is given by

(1.6) EIXIP v PI" c(p)f(p,cz,8)

where

c(p) =2Pl(pT"uP sin u du)-

and

2 2 ~p/2i
f(p'at,8) =r(1-p/ca)(I+a tan .- ) cos(P- Arctan(Btanan))

Further, for fixed v, p. and ~,ElXIP is even in a and increasing in8.

Proof. First note that X is distributed as v X where X -S(1,a,0), and

hence that ElXIP = vP'/' EIXQIP. An application of [16, Thin. 2] and a few

S changes of variable show that

E =OI (4J u- sin u du)- 2p~la f1 {0 O-1letcos(st))dt

where we have let s a tan .~*We now compute the second integral.

JtP/~l Riecos(st))dt =(1-etcos(st))(-.af/ ItJi~at~o~t+sns)

L0 0+ Re . t-P/O(1+is)e-t(l+i5)dt

=Re -a J(Ti)-P/Ote-zdz

0= Re 2 (1+is)P/"' r(1-p/ci)
p

= r(l-p/a)(l+s )/~o(P2Arctan s)
p

L
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This shows (1.6). That EIXIP is even in a is clear. To see that it is

increasing in jai, note first that cos(P- Arctan(,3 tan 21"))

cos(2.Arctan(IBI.ltan 'I2L)), -nd making the substitution a Arctan( 181 ItanTjI)

we see that e increases with l81 and 0 < e < .1 Now, letting

g(e) Ef(p,a,8a)/r(l-p/a) =(l+tan 
2 6)p/ 2acos(p2 6)

=cos(P
2 e)/(cos e)P/c' cos(re)/cos r6

we can compute that g' Ce) =r(cos e)-sin[e(l-r)] > 0. Hence f(p, ,8)is

increasing in ji, as is EjXJ P.

Example 1.5 (Chen & Shepp [3]) Let Z.,j 1, 2, 3, be independent, each

with a S,(1,1,0) distribution. Set X = Z,- Z2and Y = Z,- Z3. Clearly

X and Y are symmetric about 0. Using Lemma 1.2, the reader may easily

verify that X + Y is also symmetric, but not about 0!
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Section 2. Independent Increments Processes and Stochastic Integrals

Let I be an interval (finite or infinite) contained in R. A process

{Z(s): SEI) is said to have independent increments if the random variables

(increments) Z(tl)-z(s1 ), ... , Z(tn)-Z(Sn) are independent whenever

sI < t I S2 t 2 < < s n < tn and the s., t. are in I. We characterize

those processes with stable increments as follows.

Theorem 2.1 Fix 0 < a < 2. Let {Z(s): sEI be an independent increments

process with each increment stable of index a. Then there exist real-valued

functions, i, v, and g on I with v increasing, 3 measurable, and l l,

suc that each increment Z(t) - Z(s) has scale parameter Iv(t)-v(s)I, skew-

ness parameter f a(x)dv(s)/[v(t)-v(s)j, and location parameter v(t)-P(s).
s *

Conversely, any such choice of functions p, v, and defines such an independent

increments process in the obvious way.

Remarks (i) If v(t) -v(s) 0, the skewness parameter above is not defined,

but is immaterial - we may take it to be zero.

(ii) This theorem has an obvious analog in the setting of independently
I

scattered stable measures.

Proof. For any stable variable X, let us define V(X) = v, B(X) = s and

M(X) = , where v, a, P are as in (1.1). Now pick t0EI and set Z'(t) =

Z(t) - Z(to) for all teI. Since each Z'(t) and each increment Z'(t) - Z'(s)

is stable, we may define the functions v(t) = V(Z'(t))sgn(t-to), b(t) =

B(Z'(t)), w(t) = b(t)v(t), and (t) = M(Z'(t)).

We claim that for s < t, v(t) - v(s) = V(Z(t)-Z(s)), and thus v is

increasing and Z(t) - Z(s) has scale parameter v(t)-v(s)j for arbitrary

s,t. We verify the claim only in the case s < t < to, leaving the similarly

proved cases s < to < t and to < s < t to the reader. In the case at hand,

. .. . . . . . . . . . . . . . . . . . . . . . . .
... .

. '

. . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
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V(t) -V(s) =V(Z(t)-Z(t0))sgn(t-t0 ) -V(Z(s)-Z(t 0 ))sgn(s-t0 )

=v(z(s)-Z(t0)) - V(Z(t)-Z(t0))

=v(Z(to) - z(t) + Z(t) - Z(s)) -V(Z(t 0)-Z(t))

=[V(Z(t0)-Z(t))+V(Z(t)-z(s))] -v(Z(t 0 )-Z(t)) by (1.2)

=V(Z(t)-Z(s))

Since v is increasing, it is measurable, and induces a Lebesgue-Stielties

measure dv on I.

Now note that by Lemma 1 .2, if XIand X2are independent and stable,

that

B(X I+X 2)V(KXI-X 2) =B(X 1)V(XI) + B(X2)V(X2)

Hence for to <s < t, letting X, Z(t) - Z(s) and X2 Z(s) -~o)

w(t) -w(s) =b(t)v(t) -b(s)v(s)

= B(X +X )V(X +X2)-BX)( 2

= B(X1)V(X1)

=B(Z(t)-Z(s))[v(t)-v(s))

It is easy to verify in like fashion that the equation

w(t) -w(s) =B(Z(t)-Z(s))[v(t)-v(s)]

holds true in the cases s < t < t and s < t < to Hence

(2.1) w(t) -w(s) =BCZ(t)-Z(s))Iv(t)-V(s)l

for arbitrary s,t.

In any case, lw(t)-w(s)l < v(t)-v(s) for s < t. Hence for
n n

a < t0 <tl * tn < b, z jw(t.)-w(t.1I)i j E1v(t) - v(t. 1) v(b) -v(a).

j=1 l

This shows that w is of bounded variation on any finite interval contained

in I and induces a Lebesgue - Stieltjes measure dw on I which is absolutely

=dw ()
continuous with respect to dv. We may set s(x) T.() Clearly Ia(x)l < 1

..........................
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t

a.e. [dv) and by (2.1), a(x)dv(x)/jv(t)-v(s)i B(Z(t)-Z(s)), which is

the skewness parameter of Z(t) - Z(s).

Finally, it is easy to check (using Lemma 1.2) that M(Z(t)-Z(s)) =

p(t)- .(s) for all s,t. This holds even in the case a = 1, since logj+lj = 0. -

We now introduce a particular independent increments process of some

importance to us in Section 3. Fix a and let Ya(t) be the right-hand side

of (1.1) with v = = and 0 = . Since exp(- (t)) is the characteristic

function of an infinitely divisible distribution, there is an independent

increments process {R(s): sdtt{}with characteristic function

E exp(itR(s)) = exp(-lslia(t))

(see, e.g.[l]). This process R will be called the canonical totally right-

skewed a-stable Levy process. The corresponding function parameters of

Theorem 2.1 for R are v(t) = t, a(t) 0 0. For 0 < a < 1, R i-s an increasing

process.

We now wish to produce a Wiener-type stochastic integral with respect

a process with independent stable increments. The development here is standard, -.-

but some interesting things happen in the case a = 1.

To lay the groundwork for the integral in this case we introduce the

Orlicz space L log L, defined as follows. Let (M,d ) be a finite measure

space and let $(x) = x log+x for x > 0. Note that is positive, convex,

and increasing on [0,-), and that satisfies the so-called A2 condition at

, i.e. lim D(2x)/,(x) < ,. This is enough to guarantee that the Orlicz

space based on ,, which we call L log+L(M,d',), defined by

L log+L = {measurable f:M-f: jM( i'f  )d- ,''*

is a Banach space under the norm

It L_
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11 f 11 i nfic >O: P( IfI/c)dp<l1}+L .

M

and that, in this space, simple functions form a dense subset. .

What is important for us is that convergence of, say, fn to f in Liog L

*implies the same convergence in L, and that of the integrals {(f n-f)loglfn f

to zero, as is shown in the following

Lemm~a 2.2 For Ilfil + c < eLlog L

(2.2) 11If111 K c and

*(2.3) .fm fo fld < K2 'WjIogcj

the constants K1 and K2 depending only on i(M).

Proof Note that by the monotone convergence theorem, we have that

f lifi log+(.L!.I) < i . Hence

14 if logi.>f l
{IfI>c) {ifl>ce}

* so that J f~cI < c.

Since J If I < ceipdM), (2.2) is proved with K( 1 1 e.,(M).

{If 1.ce} 1

*For (2.3), examination of jxlogx; for xe[0,1J shows that for s e

a (2.4) JIflogIfII + f +
{IfI>l} {fl~l} (i

6{IfI<6}

.. IfIlogjfj + P1{)fI>6)e 1  + 61log6 P(N)

...................... .... ... .......... . . . . .
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Al so,
1 > iL 1oo9 f'--"1 c c logiC

f f>1'

which shows that IfIlogifl < c. Noting that uIfjI>6} < uMf 6- by the

{ If h>]}
Markov inequality, and choosing 6 = V gives us through (2.2) and (2.4) that

f If loglfIl <c + 1f 116- -1 e 1 +. (M)rWlog c!

< c + yE (e'l +(M)) + . I(M)}cElog cl,

establishing (2.3).

Now, let {Z(s): SEI} be a process with a-stable independent increments

as in Theorem 2.1. For ease and simplicity we will let Z be such that

p(t) 0, although processes with sufficiently well-behaved (t) can be

handled in a straightforward way. Also, we assume in the case a = 1 that

v(I) <.
n

For a step function f of the form f =El c s l s  (where c EiR,

s CI, sl<S for all j) we define

i n .-

n(2.5) S(f) = f(s)dZ(s) = cZ(s)-Z(s.1 )]f j=l - - -

Theorem 2.3 The stochastic integral S(f) = {f(s)dZ(s) can be defined for

all f in the space L'(I,dv) (resp. Llog +L(I,dv)) in the case atl (resp.

a=l) so that it is linear, agrees with (2.5) for step functions, and

satisfies S(f)S (vf~f,f) where

_N- 2.... 2

.. . . .. . . .. . . . .. . . .. . . . . :.:.. . . . .. . . . . .. . . . .. . . . . ... :
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Vf f (x) AJUv~ (x 11if 11

=v, ~ aff )<c (x)dv (x) and

f Jf(x)logif~x)I8(x)dv(x) al

fxl

Further SMf and S(g) are independent if and only if fg =0 a.e. [dv].

Proof Note that by Lemma 1.2 and Theorem 2.1, for a step function f as in

(2.5) we have SMf-S (vf~af~1vf) where

n

v f r Ic.1[~ )v(t ) ] -~

and

jc~l

tj-i

zv f log~ fdv
f

Tha tecamcnerigtedsrbtinond)i re o tpfntos

Alo orsc untos tecai flnert s aiy ent b0re

Todfin Snf fo eea nL rs lgLpc euneo

stepfuntion f~cvrgng n o j ~(quasi-norm, i ci~d~x/t) -t to faNoeha

........................................ J f .

. . . . . . .. .* . . . . * * ~ * *. ~ t* . -
:.'. ~*-~~.. ~ -1 .. ,...- .-
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SndZ - fmdZ S(fn-fm) by linearity on step functions, and so

j fndZ - ffmdZ has scale parameter vf = Ifn-f and location parameter
{" f -f 2 _C~nfm  nogfm'- 2''

i'=0 if Ii and pf: ( -f-"gi

-fn-fm n m= - f n-m d v if a = 1. Since these

parameters approach zero as n,m become large (cf. Lemma 2.2 in the case 0.

S=I), we conclude that {f dZ} is a Cauchy sequence in the metric of con-

vergence in probability. We are then free to define fdZ = lim prob j f dZ",.verg nce n-w n "i.

Since Of 11 O lfl, <a av < fa dv, and f logifn "dv"
nca .i n n jn

J f logifladv, Levy's continuity theorem guarantees that vf, f, and if

are as advertised. S(-) is linear by continuity.

To verify the claim concerning independence, we observe that S(f) and

S(g) are independent if and only if

"'.. ¢~~~S(f),S(g)(t)=Sf)s.Sgt):":.

for all s and t. If fg = 0 a.e. [dv], one can verify easily, using the

form of the characteristic function for these stochastic integrals, that

this equation holds. Conversely, for S(f) to be independent of S(g), we

must have that

lS(f),S(g)(St)I = 9S(f)(s)11;S(gl(t).

L

which implies that

11 sf+tgll0 = IsfB1 + Itgllo

.-. . .... .

-°. -... .
. . . . . . . . . . . . . . . . . ..- ,
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* . and hence that

Ifgc + Of-gl = 2(llfIIa + lgl'a)a OLC

That this implies fg =0 is given by the result of Lamperti [11, Corollary 2.1].
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Section 3. Stable Processes and their Spectrcil Representations

* A stochastic process J t :tcT. will be callec a roesif each

random vector 7 = (Xt %.X~ ), tj.T, is multivariate stable, i.e. if for

indpenen coiesX 1 and of Xand positive constants c1 and c2  there

exist constants c >0 and dLRn so that c1 $1 + C X2 is distributed as cX4a.

As before, iXt is a s'X> -6.Lszwe process if U is zero for all t.j and c.

Clearly if X is stable, then A-7 is stable for any AJ The converse is

not true in general (see [13]), but is true in the strictly stable case

(see [4]).

Levy [12] and Feidheim [5] have shown that a random vector Xin RMn is

multivariate stable if and only if there exists OLL(0,2] , ,.JRn, and a

finite measure r on the unit sphere S n of Rnsuch that the characteristic

function of X satisfies

(3.1) -log ~ ={:( ~ a ~.(.~7~-f~ f4

l-S +i ?.(f log?jfi)dTc~) i!-_ if Cs=l

When n =1, this agrees with (1.1) with v = '(S )and =[l-(l)rS)

Also observe that this shows that the random variable T.J has a S (v,--,-,)

distribution, where v ==v-1~ )>;~,an .. i
case c~l and --S 1 og f .? iY~l~ . (s i f I 1

We warn the reader that in case a this shows of (3.1) is not the vector

of location parameters of the individual X.'s, but rather X. has location

parameter -j s~ logis~d(

j j,
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In the representation (3.1), strict stability is equivalent to

.1=0 if a 1, and to J(tfs)di'(s) =0 for all T if a =1. The latter

occurs if and only if we may choose r symmetric. Also, Y is symmetric

about 0 (for any a < 2) if any only if = 0 and we may choose r symmetric.

Now, for an arbitrary index set T, pick arbitrary functions {ft:tT}-

in La([O,I],X) if a t 1 (resp. Llog+L([0,lJ,x) if a = 1) and set

Xt  f t( )dR(s)- -

i>= "[01]

where R is the canonical totally right-skewed a-stable Levy process (see

'  section 2). We now argue that {Xt} is an a-stable process (strict, if a1).

Let R be the canonical right-skewed a-stable Levy process on [0,2]. Let

f X) XE[0,l)

ftli(x) = and

0 xs(l,2]

0 xe[0,l].

. {ft(x-1) xe(l,2]. -.

r
Clearly the processes {X, 1 } and {X 2 } defined by Xt,1  JftldR and

X Jt,2  ft, 2dR are independent and distributed as {X t} by Theorem 2.3.

Straightforward (and arduous, if a-1) computations with the joint char-

acteristic function and formulae from Theorem 2.3 show for cl , c2 > 0

that CI(Xt '"".' Xt 1) + c2(Xt ,2, "" lt 2 ) is distributed as
7 , I n , ln- .

(clac 2a)Y(xt ,..., X ) + d, where d = 0 when a # l,and d =

k(fd,..fft x with k = _(c +C2)ogc+C )-c logc1-c logc] when
t.- 1 1I  n)0 c 2 1 1-'2 2

al. Hence, {Xt } is in fact a stable process. It is always strictly

stable if a~l and is strictly stable in the case a-1 if and only if

.. . . . .

..;;: .-, :./.., ..,, : ,,, ,.........~~..............,.....,....... ............ . .,,.,.... '.x.., - .
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ftdA = 0 for all t.it

It is the purpose of this section to show that practically all stable

processes can be represented in this way, i.e. as a set of stochastic integrals

of appropriate functions against this canonical totally right-skewed c-

stable Ldvy process. Our method is in essence the same as that of Kanter

in the case of symmetric stable processes (see [9] in view of [14]). That

is, we shall use the finite-dimensional representation (3.1) in conjunction

with an imbedding theorem (Theorem 3.1) similar to the main theorem of [9). P

We comment that another route to this representation is to use the Hilbert

space analogue of equation (3.1) due to Keulbs [10] and to proceed as he

has in his last section, carrying the skewness parameters along. We prefer

to proceed in the manner described because we feel it is more basic and direct,,

and allows us to present Theorem 3.1.

Theorem 3.1 (i) Let 0 < p <. Let L be a (real or complex) separable

Frechet space such that for each finite-dimensional subspace M there is a

linear isometry JM: M - LP[0,I]. Then all of L is linearly isometrically

imbeddable in LP via J: L -+ LP[o,1].

(ii) If in addition we assume that for fixed f, ,(JMf)<P>dX is inde-

pendent of M containing f, we can then choose J above so that

(3.2) i(Jf)<P>dx (J f)<P>dX
I. i M

for all f in L and all M containing f.

Remarks Part (i) of the theorem in the real case is due to Bretagnolle

et al [2] in the case p > 1 and to Schreiber [15] in the case 0 < p < 1.

..... . . .. .-. ...-.....-.-... .... . . .

.............. ....... e...'...-.-...... ......... ....... ... ..... ....-...-..............-.. .....-..- . .........-..... .
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Both these papers prove this without the separability hypothesis on L

and with the range of J being LP(E, ) with (E,;) a suitable measure space.

Kanter [9] has given a shorter proof in the real separable case for 0 < p < 2.

Part (ii) is our main concern here - part (i) is included because it follows

easily from our proof (by ignoring the extra assumption in (ii) and its

consequences), and because our proof is a stiil simpler and more general

version of Kanter's.

Proof Since L is separable, we may find fl,f2, ... in L such that

sp{f1,f2,...} = L and Zllfn1 < 1 (where 11i.I is the quasi-norm on L). Define
n

Mn = sp{fl,...If n } and let Jn be the hypothesized JM

Setting r = p'l we have that for n > m and scalars j,

m m
(3.3) II E AJ fjP = xl Z jfjj r

j~ ....1JJ ~ i

S: X.J fjjp
J M J p

and also (under the assumption of (ii))

cm m
(3.4) EXjf)<P>d = ( z x f dxf nj1 j j=l -mj

n
Call Fn = j= . 1) and define d'n FPdx. By (3.3) and (3.4),

(3.5) E X f nf/FnjPn= 4Z XJ f./F mPd

i.j jFnldn n jm j m m

and
m m

(3.6) (Z XjJnfj/Fn )< n jd XJJmfj/Fm)<P>d m

Now call B -- (Z ... )K':Zlz.IP<I- where K is the scalar field R

" . or CC,and give B the relative topology as a subspace of the product space

... . . . .. . . . . . . . . . . . . . . . . . .. ' ... "

. . . . . . . . .... ....-.-.-. .. .• .- ",' . . • . . . .
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D 2II {zeK:IzI<ll. Since B is closed in D, and D is compact (by the Tychonoff
j =1

* theorem), we conclude B is compact.

Define measures von B by

S(E) f f~ /Fn s~Jnf /Fn 0,0,...)eEf'

for Borel sets E of B. With this notation, equations (3.5) and (3.6) now

I read

r in

(3.7) J1~ l~ E =j~ ) izXzldmz

and

ni fB j(3.8 iB =l3  B j= **)~dmZ

in n
Note that v (B) = n([0,11) F~dX= z Ili f.t = ZI ,fII < 1. Sincen jn~.. jlp j1 'If

B is compact, the Banach-Alaoglu theorem guarantees the existence of a

subsequence iv I and a finite measure v on B with iv 'I converging weakly
nk in mnkato v. Since the functions z I~ E x.z.jP and z E~ x z xz)<P> are continuous

on B for each m and i X*** K it follows from (3.7) and (3.8) that

(3.9) J X Xzj!Pd\;(z) 1 z x r 1
Bj l l

and

(3.10) EBJ r~-<~vz inm X M d

for any M containing MM.

...........................................
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Now define U: sp{f,f 2  - LP(B,dv) to be the linear extension of29... - "

the map fn Pn where p n(Z) = z . By (3.9), U is an isometry and hence has

a unique extension (also called U) by continuity to all of L. Also, under

the assumption of (ii), this extension must have the property that

(3.11) (Uf)<P>dv 1 f)<P>dX

for all f and finite-dimensional M containing f, by (3.10). By using a measure

algebra isomorphism of B into [0,1], we may find an isometry V of LP(B,dv)
into LP([0,l],X) which satisfies J(Vf)<dX =Jf<P>dv. Setting J VU

completes the proof.

With this theorem in hand we can prove the representation theorem

previously advertised.

Let {Xt:teT} be an arbitrary stochastic process. We say that it satisfies

condition S if there exists a countable set T c T such that every Xt is

a limit in probability of a sequence from the set of all finite linear com-

binations zxjXt; X j , t. T' (see [8] and [10]). Practically all processes

of interest will satisfy this condition, including those continuous in

probability and those defined on a countable index set T.

Let LX be the linear span of the Xt s, closed under the metric of con-

vergence in probability. It is not a difficult exercise to show that condition

S is equivalent to the requirement that LX be separable.

Theorem 3.2 Let 1 $ 1. {Xt: tET} is a strictly stable process of index c-

satisfying condition S if and only if there exists a collection of functions

{ft: tET} L Lc[0,l] such that the process (Y defined by Y = JftdR is

distributionally equivalent to {X

.- t....

-. *- .. .* . .".* . .*.. .. '-J ,_ *-"*"-•. ....... , L.... -..... '"........
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Proof For the "if" part of the theorem, we note that { !above is a strictly

a-stable process by arguments given at the beginning of this section. To

see that {Y t} (and hence {X t ) satisfies condition S, note that Lcs[0,l)

(and hence any subspace thereof) is separable, and the closed linear extension

of the map f +Ytis an isomorphism of 5pl'ft} L a onto L Y.

We now prove the "only if" part. Clearly, every element of L X is

* strictly stable of index c, and moreover, iZ:ZELX is a strictly c-stable

Ir process. Now let M4 be a finite-dimensional subspace of LX9 and let Z,,... 9 Z n

be such that M = sp{Z,,..., 9Zn 1. Since Y (Z1, ... , Z n is jointly strictly

c-stable, we may write by (3.1).

(3.12)y -o.(T) i ~f(~Istancr sE~)c>d(-
Sn

for some finite measure r onS

Define g S -). FR by gj =s s i(r (Sn)f-l/s. Now pick a measure-pre-

serving set transformation T of (F,(r(Sn) dr) into (BdA). Here,

F =afg. :j 1, , n}, B ={Borel sets of [0,1)},

and dX is Lebesgue measure. Set h. Tg.. It is evident from (3.12) thatj

(3.13) -logqCE) = iz i tan 2 (z tgC)<s)(r(Snf di~
J g 2 A3

& ~th (x) ad x(x) -i ta n 22 J(zth(x)cdX)

i Y I 'INow we metrize Lx as follows. For any YLx we set 11Y11 (-log jEe ) .

*By (3.13), I1*U a quasi-norm (a true norm, if cs>l) on LX which metrizes con-

vergence in probability. Also, for L X so normed, the linear extension of

the map Z-~ hi, call it J9is an isometry of M into LcsEO,l). We also see

that for eahZi , WM(Z))c> dX is just the skewness parameter of Z,
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multiplied by liZiL l  and hence does not depend on M containing f.

We can now apply Theorem 3.1 (ii) to conclude that there is an isometry

J: Lx-4_E[O,l] with f(J(Z))<'>dx being the skewness parameter of Z, multiplied

by RZUl Setting ft J(Xt) and recalling Theorem 2.3 completes the proof. -

The author has not as of yet been able to obtain an analogous version

of this theorem in the case a = 1. One difficulty stems in part from the

curious behavior of the location parameter (cf. Lemma 1.1, (1.4), example 1.5,

Theorem 2.3, and the comments following (3.1)). It is not a linear function

of the variables in the process as is the case if a 1. Another difficulty

comes from the fact that with respect to scale and skewness, the appropriate

"imbedding space" is L1; yet for the location parameter to exist, integrals

of the form f logjfjdX must be defined in some appropriate sense. Hence

it is not clear what the appropriate space of integrable functions should

be - Ll is too large (but has the "right" norm in one sense), and Llog+L

may be too small or may have an altogether inappropriate norm.

We close by making a few comments regarding Theorem 3.2. First, we

observe we have lost little generality in assuming strict stability, since

subtracting location parameters (which are means if a>l) from a general

stable process yields a strictly stable process in the case acl. Secondly,

we mention that in some sense the skewness of elements of the process are

mirrored in the skewness of the corresponding representing functions. More

specifically, observe that a process X ftdR has all variables totally

right-skewed (resp. left-skewed), i.e., all variables have skewness parameter

+1 (resp. -1), if and only if ft a 0 (resp. ft_<O) a.e. [dA] for each t. Also if

{Xt } is a symmetric stable process, setting t fo.t Ift(2x) for 0 <_x <

ft( 2x-1) for - x < 1

t 2..

L~ ..
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and observing that { jftdR} is distributed as .Xt} gives us that 1Xt } is a

symmetric stable process if and only if it has a representation {f ftd-

with each f (and each linear combination zx ft) symmetrically distributed.

Also, our theorem relates to the spectral representation theorem for symmetric

stable processes (see [8]) as follows: if the symmetric a-stable process

x t  is represented by {jftdZ;, where Z is a symmetric a-stable Levy process,

then defining f from f as above, the process {JftdRI also represents {Xt.

. . t .

."

**~. .. * *.* *.. **. .%. .*~***. **.*. .*... .. . ... *.*. ,* **.



24

Referenzes

[1] Breiman, L., Probability, Addison-Wesley, Reading MA, 1968.

[2] Bretagnolle, J., Dacunha-Castelle, D., Krivine, J.L., "Lois stables

et espaces LP," Ann. Inst. Henri Poincare, II (1966), pp. 231-259.

[3) Chen, R., Shepp, L., "On the sum of symmetric random variables," Amer.

Statist., 37 (1983), p. 237.

[4] Dudley, R., Kanter, M., "Zero-one laws for stable measures," Proc.

Amer. Math. Soc., 45 (1974), pp. 245-252.

[5] Feldheim, E., "Etude de la stabiliti des lois de probabilite," These

de la Faculti des Sciences de Paris, 1937.

[6] Feller, W., An Introduction to Probability Theory and its Applications,

Vol II, John Wiley, New York, 1966.

. [7] Hall, P., "A comedy of errors: the canonical form for a stable characteristic

function," Bull. London Math. Soc., 13 (1981), pp. 23-27.

. [8] Hardin, C., "On the spectral representation of symmetric stable processes,"

J. Multivariate Anal., 12 (1982), pp. 385-401.

" [9] Kanter, M., "A representation theorem for LP spaces," Proc. Amer. Math.

Soc., 31 (1972), pp. 472-474.

[10) Kuelbs, J., "A representation theorem for symmetric stable processes

and stable measures on H," Z. Wahrsch. Verw. Geb., 26 (1973) pp. 259-271.
S

[11] Lamperti, J., "On the isometries of certain function spaces," Pac. J.

Math., 8 (1958), pp. 459-466.

" [12] Lvy, P., Thorie de l'Addition des Variables Aleatoire, Gauthier-Villars,

Paris, 1937 (2nd ed. 1954).

. [13] Marcus, D., "Non-stable laws with all projections stable," Z. Wahrsch.

Verw. Geb., 64 (1983), pp. 139-156.

£14] Schilder, M., "Some structure theorems for the symmetric stable laws,"

Ann. Math. Stat., 41 (1970), pp. 412-421.

W-. A -.



25

[15) Schreiber, M., "Quelques remarques sur les caracterisations des espaces

LP , 0 < p < I," Ann. Inst. Henri Poincare, 8 (1972), pp. 83-92.

[16) Wolfe, S., "On the local behavior of characteristic functions,"

Ann. Probab., 1 (1973), pp. 802-866.

.e.

".o. . . . . . . . . .

M* .. . . . . . . . . . . . . . . . . . . . .

. .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . . .-. ° 



I.

* FILMED
i I:

3-85

DTIC
4.

..ii Ai.,-%:-. . .... . .


